## 2002 SCHEME

EE752

## Seventh Semester B.E. Degree Examination, June-July 2009 Fuzzy Logic Control

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- a. Explain the following with example:
  - Normal fuzzy set
  - Convex fuzzy set
  - iii) α- cut

iv) Level set.

(10 Marks)

b. Let  $X = \{x_1, x_2\}$ ;  $Y = \{y_1, y_2\}$ ;  $Z = \{z_1, z_2, z_3\}$  and if R represents the relation between X & Y and S represents the relation between Y and Z which are given as

$$R = \begin{bmatrix} y_1 & y_2 \\ x_1 & 0.7 & 0.5 \\ x_2 & 0.8 & 0.4 \end{bmatrix} \qquad S = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.9 & 0.6 & 0.2 \\ y_2 & 0.1 & 0.7 & 0.5 \end{bmatrix}$$

Find out T = R o S by max - min method and max-dot method.

(10 Marks)

Write a short note on fuzzy equivalence and tolerance relations.

(06 Marks)

 Let X = {a,b,c} & Y = {1,2,3} and A be the fuzzy relation between X and Y and is given by  $A = \left\{ \frac{1}{(a,1)} + \frac{0.6}{(a,2)} + \frac{0.4}{(a,3)} + \frac{0.5}{(b,1)} + \frac{0.8}{(b,2)} + \frac{0.2}{(b,3)} + \frac{0.4}{(c,1)} + \frac{0.1}{(c,2)} + \frac{0.3}{(c,3)} \right\}$ 

Find the projection of A on X and projection of A on Y.

(08 Marks)

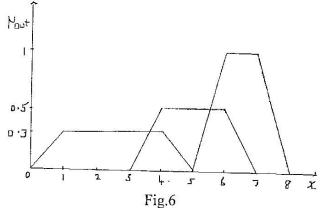
: Given two fuzzy sets 
$$\stackrel{A}{\approx} = \left\{ \frac{1}{1} + \frac{0.5}{2} + \frac{0.65}{3} + \frac{0.85}{4} + \frac{1}{5} \right\}$$
  $\stackrel{B}{\approx} = \left\{ \frac{0.2}{1} + \frac{0.5}{2} + \frac{0.9}{3} + \frac{0.5}{4} \right\}$ 

Find (i)  $\underline{A} \cup \underline{B}$  (ii)  $\overline{\underline{A}} \cup \underline{B}$  (iii)  $\underline{A} \cup \overline{\underline{B}}$  (iv)  $\underline{A} \cap \overline{B}$ 

(06 Marks)

 $F = U : U = \{1, 2, 3, 4\}$  and  $V = \{1, 2\}$ . Define a fuzzy set A and U by  $\cdot$  (A  $\rightarrow$  'x is small')  $A = \frac{1}{4} + \frac{0.7}{2} + \frac{0.3}{2} + \frac{0.05}{4}$  Define a relation R between U and V by: (R \rightarrow 'x is close to y')  $R = \frac{1}{(1,1)} + \frac{1}{(2,2)} + \frac{0.8}{(1,2)} + \frac{0.8}{(2,1)} + \frac{0.8}{(2,1)} + \frac{0.5}{(3,2)} + \frac{0.5}{(4,2)} + \frac{0.5}{(4,2)} + \frac{0.2}{(4,1)}$  Use the compositional rule of inference to find the corresponding fuzzy set B defined on V (B \rightarrow 'y is small'). (12 Marks)

- \* is a fuzzy proposition? With example, interpret the connectives AND and OR used in (08 Marks) repositions.
- 2 Inguistic variables? Explain their relevance in fuzzy logic control.
  - Suppose X = {1, 2, 3, 4, 5} and small is interpreted as  $|V| \text{ small} = \frac{1}{1} + \frac{0.8}{2} + \frac{0.6}{3} + \frac{0.4}{4} + \frac{0.2}{5}$


Fig. 2s  $\frac{1}{2}$  large =  $\frac{0.2}{1} + \frac{0.4}{2} + \frac{0.6}{3} + \frac{0.8}{4} + \frac{1}{5}$  If R is the relation that represents "if (12 Marks) X is seed! then Y is large else y is not very large" Find R.

V.S.Y

3

- 5 a. What is scaling factor? Explain the heuristic method of selecting a scaling factor. (06 Marks)
  - b. With a block diagram explain the structure of FKBC. (08 Marks)
  - c. Explain the defuzzification procedure by (i) Centre of gravity (ii) Centre of sums method.

    (06 Marks)
- 6 Determine the defuzzifier output by centre of gravity, centre of sums, centre of largest area, first of maxima and middle of maxima defuzzification methods. (20 Marks)



- 7 a. Show that FKBC is a non-linear transfer element of a system controller.
- (10 Marks)

b. Explain sliding mode FKBC.

(10 Marks)

8 a. Explain any two adaptation techniques of a fuzzy system.

(10 Marks)

b. Explain self organizing fuzzy controller.

(10 Marks)